Kainate receptor pore‐forming and auxiliary subunits regulate channel block by a novel mechanism
نویسندگان
چکیده
KEY POINTS Kainate receptor heteromerization and auxiliary subunits, Neto1 and Neto2, attenuate polyamine ion-channel block by facilitating blocker permeation. Relief of polyamine block in GluK2/GluK5 heteromers results from a key proline residue that produces architectural changes in the channel pore α-helical region. Auxiliary subunits exert an additive effect to heteromerization, and thus relief of polyamine block is due to a different mechanism. Our findings have broad implications for work on polyamine block of other cation-selective ion channels. ABSTRACT Channel block and permeation by cytoplasmic polyamines is a common feature of many cation-selective ion channels. Although the channel block mechanism has been studied extensively, polyamine permeation has been considered less significant as it occurs at extreme positive membrane potentials. Here, we show that kainate receptor (KAR) heteromerization and association with auxiliary proteins, Neto1 and Neto2, attenuate polyamine block by enhancing blocker permeation. Consequently, polyamine permeation and unblock occur at more negative and physiologically relevant membrane potentials. In GluK2/GluK5 heteromers, enhanced permeation is due to a single proline residue in GluK5 that alters the dynamics of the α-helical region of the selectivity filter. The effect of auxiliary proteins is additive, and therefore the structural basis of polyamine permeation and unblock is through a different mechanism. As native receptors are thought to assemble as heteromers in complex with auxiliary proteins, our data identify an unappreciated impact of polyamine permeation in shaping the signalling properties of neuronal KARs and point to a structural mechanism that may be shared amongst other cation-selective ion channels.
منابع مشابه
Q/R site editing controls kainate receptor inhibition by membrane fatty acids.
RNA editing within the pore loop controls the pharmacology and permeation properties of ion channels formed by neuronal AMPA and kainate receptor subunits. Genomic sequences for the glutamate receptor 2 (GluR2) subunit of AMPA receptors and the GluR5 and GluR6 subunits of kainate receptors all encode a neutral glutamine (Q) residue within the channel pore that can be converted by RNA editing to...
متن کاملThe Role of Auxiliary Subunits for the Functional Diversity of Voltage-Gated Calcium Channels
Voltage-gated calcium channels (VGCCs) represent the sole mechanism to convert membrane depolarization into cellular functions like secretion, contraction, or gene regulation. VGCCs consist of a pore-forming α(1) subunit and several auxiliary channel subunits. These subunits come in multiple isoforms and splice-variants giving rise to a stunning molecular diversity of possible subunit combinati...
متن کاملDistinct Structural Pathways Coordinate the Activation of AMPA Receptor-Auxiliary Subunit Complexes
Neurotransmitter-gated ion channels adopt different gating modes to fine-tune signaling at central synapses. At glutamatergic synapses, high and low activity of AMPA receptors (AMPARs) is observed when pore-forming subunits coassemble with or without auxiliary subunits, respectively. Whether a common structural pathway accounts for these different gating modes is unclear. Here, we identify two ...
متن کاملDifferences in AMPA and kainate receptor interactomes facilitate identification of AMPA receptor auxiliary subunit GSG1L.
AMPA receptor (AMPA-R) complexes consist of channel-forming subunits, GluA1-4, and auxiliary proteins, including TARPs, CNIHs, synDIG1, and CKAMP44, which can modulate AMPA-R function in specific ways. The combinatorial effects of four GluA subunits binding to various auxiliary subunits amplify the functional diversity of AMPA-Rs. The significance and magnitude of molecular diversity, however, ...
متن کاملDifferential expression of Kv4 pore-forming and KChIP auxiliary subunits in rat uterus during pregnancy.
Regulation of voltage-gated K(+) (K(v)) channel expression may be involved in controlling contractility of uterine smooth muscle cells during pregnancy. Functional expression of these channels is not only controlled by the levels of pore-forming subunits, but requires their association with auxiliary subunits. Specifically, rapidly inactivating K(v) current is prominent in myometrial cells and ...
متن کامل